

tel.: (+48 22) 825-04-71 (+48 22) 825-76-55 fax: (+48 22) 825-52-86

www.itb.pl





## European Technical Assessment

#### ETA-17/0176 of 30/03/2017

#### **General Part**

**Technical Assessment Body issuing the European Technical Assessment** 

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

**Manufacturing plant** 

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Instytut Techniki Budowlanej

**RDI ANCHOR** 

Deformation-controlled expansion anchors for use in non-cracked concrete

Rex Fastening Systems (HK) Ltd. Unit 2005, 20/F, Enterprise Square 3 39 Wang Chiu Road Kowloon Bay, Hong Kong

Manufacturing Plant no. 3

11 pages including 3 Annexes which form an integral part of this Assessment

European Assessment Document (EAD) 330232-00-0601 "Mechanical fasteners for use in concrete"

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

#### **Specific Part**

#### 1 Technical description of the product

RDI ANCHOR are deformation-controlled expansion anchors. The anchors RDI ANCHOR are made of zinc plated steel.

The anchor is installed in a drilled hole and anchored by deformation-controlled expansion.

The description of the product is given in Annex A.

## 2 Specification of the intended use in accordance with the applicable European Assessment Document (EAD)

The performances given in Section 3 are only valid if the anchors are used in compliance with the specifications and conditions given in Annex B.

The performances given in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer or the Technical Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

## 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Performance of the product

#### 3.1.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                 | Performance          |
|------------------------------------------|----------------------|
| Characteristic resistance, displacements | See Annexes C1 to C3 |
| Edge distance and spacing                | See Annexes C1 to C3 |

#### 3.1.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance                               |
|--------------------------|-------------------------------------------|
| Reaction to fire         | Anchors satisfy requirements for Class A1 |
| Resistance to fire       | No performance assessed                   |

#### 3.2 Methods used for the assessment

The assessment of fitness of the anchors for the declared intended use in relation to the requirements for mechanical resistance and stability and safety in case of fire in the sense of the Basic Requirements 1 and 2 has been made in accordance with the EAD 330232-00-0601 "Mechanical fasteners for use in concrete".

## 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision 96/582/EC of the European Commission the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table applies.

| Product                           | Intended use                                                                                                                  | Level or class | System |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------|--------|
| Metal anchors for use in concrete | For fixing and/or supporting to concrete structural elements (which contributes to the stability of the works) or heavy units | _              | 1      |

# 5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document (EAD)

Technical details necessary for the implementation of the AVCP system are laid down in the control plan which is deposited at Instytut Techniki Budowlanej.

For type testing the results of the tests performed as part of the assessment for the European Technical Assessment shall be used unless there are changes in the production line or plant. In such cases the necessary type testing has to be agreed between Instytut Techniki Budowlanej and the notified body.

Issued in Warsaw on 30/03/2017 by Instytut Techniki Budowlanej

Marcin M. Kruk, PhD
Director of ITB

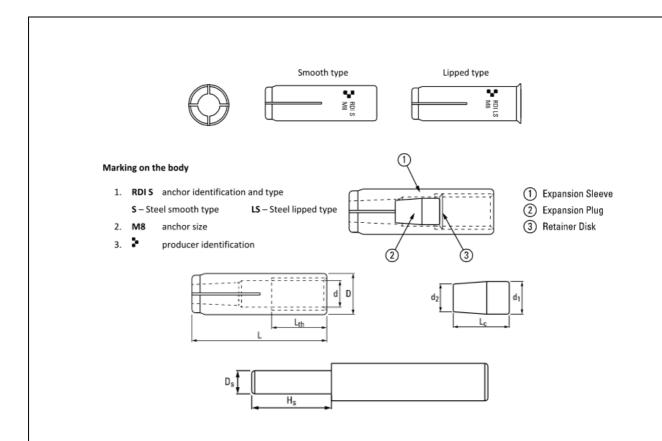



Table A1. RDI ANCHOR – dimensions and materials

| Dimensions           |                |    |     |                   |      |                                   |                   |      |  |
|----------------------|----------------|----|-----|-------------------|------|-----------------------------------|-------------------|------|--|
| Anchor siz           | ze             |    | M8  | M10               | M12  | M12D                              | M16               | M20  |  |
| Expansion sleeve     |                |    |     |                   |      |                                   |                   |      |  |
| Sleeve diameter      | D              | mm | 10  | 12                | 15   | 16                                | 20                | 25   |  |
| Sleeve length        | L              | mm | 30  | 40                | 50   | 50                                | 65                | 80   |  |
| Thread               | d              | -  | M8  | M10               | M12  | M12                               | M16               | M20  |  |
| Thread length        | $L_{th}$       | mm | 13  | 17                | 21   | 21                                | 30                | 30   |  |
| Expansion plug       |                |    |     |                   |      |                                   |                   |      |  |
| Plug diameter        | d <sub>1</sub> | mm | 6,5 | 8                 | 10,1 | 10,1                              | 13,5              | 17,3 |  |
| Plug diameter        | d <sub>2</sub> | mm | 5,5 | 6,5               | 8,5  | 8,5                               | 11,4              | 16,3 |  |
| Plug length          | L <sub>c</sub> | mm | 12  | 15                | 20   | 20                                | 27                | 30   |  |
| Installation pin     |                |    |     |                   |      |                                   |                   |      |  |
| Setting pin diameter | Ds             | mm | 6,6 | 7,8               | 9,6  | 9,6                               | 13,5              | 15,8 |  |
| Setting pin length   | Hs             | mm | 18  | 25                | 30   | 30                                | 38                | 50   |  |
|                      |                |    |     | Material          | s    |                                   |                   |      |  |
| Element              |                |    |     | Material          |      | Protection                        |                   |      |  |
| Expansion sle        | eve            |    | C   | )195 acc. to GB/T | 700  | zi                                | nc coating (≥ 5 µ | m);  |  |
| Expansion p          | lug            |    | G   | 195 acc. to GB/T  | 700  | electroplated acc. to EN ISO 4042 |                   |      |  |

#### **RDI ANCHOR**

## Product description

Characteristic of the product

#### Annex A1

#### SPECIFICATION OF INTENDED USE

#### Anchorages subject to:

Static and quasi-static loads.

#### Base material:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum to C50/60 at maximum according to EN 206.
- Non-cracked concrete.

#### Use conditions (environmental conditions):

Structures subject to dry internal conditions.

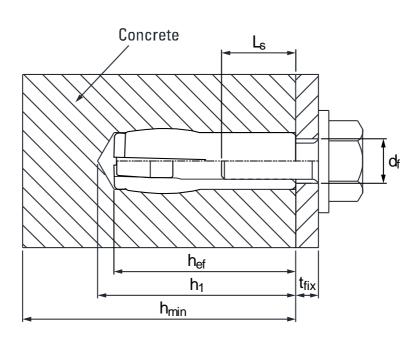
#### Design:

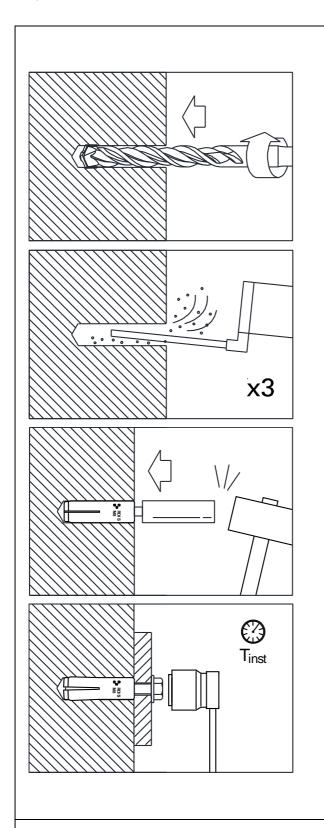
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be transmitted. The
  position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
  reinforcement or to supports, etc.).
- Anchorages under static and quasi-static loads are designed in accordance with EOTA Technical Report TR 055.

#### Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging any component of the anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools.
- Check of concrete being well compacted, e.g. without significant voids.
- Positioning of the drill holes without damaging the reinforcement.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
- Anchor installation such that the effective anchorage depth is complied with.

| RDI ANCHOR                 | Annex B1                                     |
|----------------------------|----------------------------------------------|
| Intended use Specification | of European Technical Assessment ETA-17/0176 |





Table B1: Installation parameters

| Anchor                                    |                     |      | RDI ANCHOR |     |     |      |     |     |  |  |  |
|-------------------------------------------|---------------------|------|------------|-----|-----|------|-----|-----|--|--|--|
| Size                                      |                     |      | M8         | M10 | M12 | M12D | M16 | M20 |  |  |  |
| Effective anchorage depth                 | h <sub>ef</sub>     | [mm] | 30         | 40  | 50  | 50   | 65  | 80  |  |  |  |
| Drill hole depth                          | h <sub>1</sub>      | [mm] | 33         | 43  | 54  | 54   | 70  | 85  |  |  |  |
| Drill hole diameter                       | d <sub>0</sub>      | [mm] | 10         | 12  | 15  | 16   | 20  | 25  |  |  |  |
| Installation torque (max)                 | T <sub>inst</sub>   | [mm] | 8          | 15  | 35  | 35   | 60  | 120 |  |  |  |
| Thickness of concrete member (min)        | h <sub>min</sub>    | [mm] | 100        | 100 | 100 | 100  | 130 | 160 |  |  |  |
| Screwing depth (min)                      | L <sub>s, min</sub> | [mm] | 8          | 10  | 12  | 12   | 16  | 20  |  |  |  |
| Screwing depth (max)                      | L <sub>s, max</sub> | [mm] | 13         | 17  | 21  | 21   | 30  | 30  |  |  |  |
| Diameter of clearance hole in the fixture | d <sub>f</sub>      | [mm] | 9          | 12  | 14  | 14   | 18  | 22  |  |  |  |
| Spacing (min)                             | S <sub>min</sub>    | [mm] | 41         | 54  | 68  | 68   | 88  | 108 |  |  |  |
| Edge distance (min)                       | C <sub>min</sub>    | [mm] | 41         | 54  | 68  | 68   | 88  | 108 |  |  |  |

#### Fastening screws or anchor threaded rods:

Steel, property class 4.6 / 4.8 / 5.8 / 6.8 / 8.8 according to EN-ISO 898-1; thickness of galvanizing  $\geq$  5  $\mu m$ 

| RDI ANCHOR                              | Annex B2                                           |
|-----------------------------------------|----------------------------------------------------|
| Intended use<br>Installation parameters | of European<br>Technical Assessment<br>ETA-17/0176 |



Drill hole with rotary percussive machine. Drill to a required depth.

Blow out dust at least 3 times with a hand pump.

Put the anchor into the drill hole, hammering with the installation tool, until the setting pin fully insert into the anchor.

Fix the fixture by screw or threaded rod with max.  $\boldsymbol{T}_{\text{inst}}.$ 

#### **RDI ANCHOR**

## Intended use Installation instruction and tools

#### Annex B3

Table C1: Characteristic resistance to tension load in non-cracked concrete (static and quasi-static loading)

| Anchor             |                             | RDI ANCHOR                                       |      |      |      |      |      |       |       |
|--------------------|-----------------------------|--------------------------------------------------|------|------|------|------|------|-------|-------|
| Size               |                             |                                                  |      | М8   | M10  | M12  | M12D | M16   | M20   |
| Steel failure      |                             |                                                  |      |      |      |      |      |       |       |
| Steel failure with | h threaded rod grade 4.6    |                                                  |      |      |      |      |      |       |       |
| Characteristic re  | esistance                   | $N_{Rk,s}$                                       | [kN] | 14,6 | 23,2 | 33,7 | 33,7 | 62,8  | 98,0  |
| Partial safety fa  | ctor                        | γ <sub>Ms</sub> <sup>2)</sup>                    | [-]  | 2,0  | 2,0  | 2,0  | 2,0  | 2,0   | 2,0   |
| Steel failure with | h threaded rod grade 4.8    |                                                  |      |      |      |      |      |       |       |
| Characteristic re  | esistance                   | $N_{Rk,s}$                                       | [kN] | 14,6 | 23,2 | 33,7 | 33,7 | 62,8  | 98,0  |
| Partial safety fa  | ctor                        | γ <sub>Ms</sub> <sup>2)</sup>                    | [-]  | 1,5  | 1,5  | 1,5  | 1,5  | 1,5   | 1,5   |
| Steel failure with | h threaded rod grade 5.8    |                                                  |      |      |      |      |      |       |       |
| Characteristic re  | esistance                   | $N_{Rk,s}$                                       | [kN] | 18,3 | 29,0 | 42,2 | 42,2 | 78,5  | 122,5 |
| Partial safety fa  | ctor                        | γ <sub>Ms</sub> <sup>2)</sup>                    | [-]  | 1,5  | 1,5  | 1,5  | 1,5  | 1,5   | 1,5   |
| Steel failure with | h threaded rod grade 6.8    |                                                  |      |      |      |      |      |       |       |
| Characteristic re  | esistance                   | $N_{Rk,s}$                                       | [kN] | 22,0 | 34,8 | 50,6 | 50,6 | 94,2  | 147,0 |
| Partial safety fa  | ctor                        | γ <sub>Ms</sub> <sup>2)</sup>                    | [-]  | 1,5  | 1,5  | 1,5  | 1,5  | 1,5   | 1,5   |
| Steel failure with | h threaded rod grade 8.8    |                                                  |      |      |      |      |      |       |       |
| Characteristic re  | esistance                   | $N_{Rk,s}$                                       | [kN] | 29,3 | 46,4 | 67,4 | 67,4 | 125,6 | 196,0 |
| Partial safety fa  | ctor                        | γ <sub>Ms</sub> <sup>2)</sup>                    | [-]  | 1,5  | 1,5  | 1,5  | 1,5  | 1,5   | 1,5   |
| Pullout failure    |                             |                                                  |      |      |      |      |      |       |       |
| Characteristic re  |                             | $N_{Rk,p}$                                       | [kN] | 1)   | 1)   | 1)   | 1)   | 25    | 30    |
| Installation safe  | ty factor                   | $\gamma_2^{(3)} = \gamma_{inst}^{(4)(5)}$        | [-]  | 1,2  | 1,2  | 1,4  | 1,2  | 1,2   | 1,2   |
|                    | concrete C30/37             |                                                  | [-]  | 1,22 | 1,22 | 1,22 | 1,22 | 1,22  | 1,22  |
| Increasing factor  | concrete C40/50             | Ψc                                               | [-]  | 1,41 | 1,41 | 1,41 | 1,41 | 1,41  | 1,41  |
|                    | concrete C50/60             |                                                  | [-]  | 1,55 | 1,55 | 1,55 | 1,55 | 1,55  | 1,55  |
| Concrete cone      | failure and splitting failu | ıre                                              |      |      |      |      |      |       |       |
| Effective embed    | dment depth                 | h <sub>ef</sub>                                  | [mm] | 30   | 40   | 50   | 50   | 65    | 80    |
| Factor for non-c   | cracked concrete            | $k_1^{(3)} = k_{ucr}^{(4)}$                      | [-]  | 10,1 | 10,1 | 10,1 | 10,1 | 10,1  | 10,1  |
| Factor for non-c   | cracked concrete            | k <sub>ucr,N</sub> <sup>5)</sup>                 | [-]  | 11,0 | 11,0 | 11,0 | 11,0 | 11,0  | 11,0  |
| Installation safe  | ty factor                   | $\gamma_2^{(3)} = \gamma_{\text{inst}}^{(4)(5)}$ | [-]  | 1,2  | 1,2  | 1,4  | 1,2  | 1,2   | 1,2   |
|                    | concrete C30/37             |                                                  | [-]  | 1,22 | 1,22 | 1,22 | 1,22 | 1,22  | 1,22  |
| Increasing factor  | concrete C40/50             | Ψc                                               | [-]  | 1,41 | 1,41 | 1,41 | 1,41 | 1,41  | 1,41  |
|                    | concrete C50/60             |                                                  | [-]  | 1,55 | 1,55 | 1,55 | 1,55 | 1,55  | 1,55  |
| Characteristic re  | esistance to splitting      | $N^0_{Rk,sp}$                                    | [kN] | 1)   | 1)   | 1)   | 1)   | 25    | 30    |
| Characteristic     | concrete cone failure       | S <sub>cr,N</sub>                                | [mm] | 90   | 120  | 150  | 150  | 195   | 240   |
| spacing            | splitting failure           | S <sub>cr,sp</sub>                               | [mm] | 210  | 280  | 350  | 350  | 455   | 560   |
| Characteristic     | concrete cone failure       | C <sub>cr,N</sub>                                | [mm] | 45   | 60   | 75   | 75   | 97    | 120   |
| edge distance      | splitting failure           | C <sub>cr,sp</sub>                               | [mm] | 105  | 140  | 175  | 175  | 227   | 280   |

| RDI  | A 1 1      | $\sim$ 11 |     |
|------|------------|-----------|-----|
| W111 | $\Delta N$ |           | ( ) |
|      |            |           |     |

#### **Performances**

Characteristic resistance to tension load

#### Annex C1

| Anchor                                    |                                       |      | RDI ANCHOR |          |       |       |       |       |  |
|-------------------------------------------|---------------------------------------|------|------------|----------|-------|-------|-------|-------|--|
| Size                                      |                                       |      | M8         | M10      | M12   | M12D  | M16   | M20   |  |
| Steel failure without lever arm           |                                       |      |            |          |       |       |       |       |  |
| Steel failure with threaded rod grade 4.6 |                                       |      |            |          |       |       |       |       |  |
| Characteristic resistance                 | $V_{Rk,s}^{3)4} = V_{Rk,s}^{0}^{5}$   | [kN] | 7,3        | 11,6     | 31,4  | 16,9  | 31,4  | 49,0  |  |
| Factor considering ductility              | $k^{3)} = k_2^{4)} = k_7^{5)}$        | [-]  | 0,8        | 0,8      | 0,8   | 0,8   | 0,8   | 0,8   |  |
| Partial safety factor                     | γ <sub>Ms</sub> <sup>2)</sup>         | [-]  | 1,67       | 1,67     | 1,67  | 1,67  | 1,67  | 1,67  |  |
| Steel failure with threaded rod grade 4.8 |                                       |      |            |          | •     |       |       |       |  |
| Characteristic resistance                 | $V_{Rk,s}^{3)4} = V_{Rk,s}^{0}^{5}$   | [kN] | 7,3        | 11,6     | 31,4  | 16,9  | 31,4  | 49,0  |  |
| Factor considering ductility              | $k^{3)} = k_2^{4)} = k_7^{5)}$        | [-]  | 0,8        | 0,8      | 0,8   | 0,8   | 0,8   | 0,8   |  |
| Partial safety factor                     | γ <sub>Ms</sub> <sup>2)</sup>         | [-]  | 1,25       | 1,25     | 1,25  | 1,25  | 1,25  | 1,25  |  |
| Steel failure with threaded rod grade 5.8 |                                       |      |            |          |       |       |       |       |  |
| Characteristic resistance                 | $V_{Rk,s}^{3)4)} = V_{Rk,s}^{0}^{5)}$ | [kN] | 9,2        | 14,5     | 39,3  | 21,1  | 39,3  | 61,3  |  |
| Factor considering ductility              | $k^{3)} = k_2^{4)} = k_7^{5)}$        | [-]  | 0,8        | 0,8      | 0,8   | 0,8   | 0,8   | 0,8   |  |
| Partial safety factor                     | γ <sub>Ms</sub> <sup>2)</sup>         | [-]  | 1,25       | 1,25     | 1,25  | 1,25  | 1,25  | 1,25  |  |
| Steel failure with threaded rod grade 6.8 |                                       |      |            |          |       |       |       |       |  |
| Characteristic resistance                 | $V_{Rk,s}^{3)4)} = V_{Rk,s}^{0}^{5)}$ | [kN] | 11,0       | 17,4     | 47,1  | 25,3  | 47,1  | 73,5  |  |
| Factor considering ductility              | $k^{3)} = k_2^{4)} = k_7^{5)}$        | [-]  | 0,8        | 0,8      | 0,8   | 0,8   | 0,8   | 0,8   |  |
| Partial safety factor                     | γ <sub>Ms</sub> <sup>2)</sup>         | [-]  | 1,25       | 1,25     | 1,25  | 1,25  | 1,25  | 1,25  |  |
| Steel failure with threaded rod grade 8.8 |                                       |      |            |          |       |       |       |       |  |
| Characteristic resistance                 | $V_{Rk,s}^{3)4)} = V_{Rk,s}^{0}^{5)}$ | [kN] | 14,6       | 23,2     | 62,8  | 33,7  | 62,8  | 98,0  |  |
| Factor considering ductility              | $k^{3)} = k_2^{4)} = k_7^{5)}$        | [-]  | 0,8        | 0,8      | 0,8   | 0,8   | 0,8   | 0,8   |  |
| Partial safety factor                     | γ <sub>Ms</sub> <sup>2)</sup>         | [-]  | 1,25       | 1,25     | 1,25  | 1,25  | 1,25  | 1,25  |  |
| Steel failure with lever arm              |                                       |      |            |          |       |       |       |       |  |
| Steel failure with threaded rod grade 4.6 |                                       |      |            |          |       |       |       |       |  |
| Characteristic bending resistance         | $M^0_{Rk,s}$                          | [Nm] | 15,0       | 29,9     | 52,4  | 52,4  | 133,3 | 259,8 |  |
| Partial safety factor                     | γ <sub>Ms</sub> <sup>2)</sup>         | [-]  | 1,67       | 1,67     | 1,67  | 1,67  | 1,67  | 1,67  |  |
| Steel failure with threaded rod grade 4.8 |                                       |      |            |          |       |       |       |       |  |
| Characteristic bending resistance         | $M^0_{Rk,s}$                          | [Nm] | 15,0       | 29,9     | 52,4  | 52,4  | 133,3 | 259,8 |  |
| Partial safety factor                     | γ <sub>Ms</sub> <sup>2)</sup>         | [-]  | 1,25       | 1,25     | 1,25  | 1,25  | 1,25  | 1,25  |  |
| Steel failure with threaded rod grade 5.8 |                                       |      |            |          |       |       |       |       |  |
| Characteristic bending resistance         | $M^0_{Rk,s}$                          | [Nm] | 18,8       | 37,4     | 65,6  | 65,6  | 166,6 | 324,8 |  |
| Partial safety factor                     | γ <sub>Ms</sub> <sup>2)</sup>         | [-]  | 1,25       | 1,25     | 1,25  | 1,25  | 1,25  | 1,25  |  |
| Steel failure with threaded rod grade 6.8 |                                       |      |            | <b>.</b> |       |       |       |       |  |
| Characteristic bending resistance         | M <sup>0</sup> <sub>Rk,s</sub>        | [Nm] | 22,5       | 44,9     | 78,7  | 78,7  | 199,9 | 389,7 |  |
| Partial safety factor                     | γ <sub>Ms</sub> <sup>2)</sup>         | [-]  | 1,25       | 1,25     | 1,25  | 1,25  | 1,25  | 1,25  |  |
| Steel failure with threaded rod grade 8.8 |                                       |      |            |          |       |       |       |       |  |
| Characteristic bending resistance         | $M^0_{Rk,s}$                          | [Nm] | 30,0       | 59,9     | 104,9 | 104,9 | 266,6 | 519,  |  |
| Partial safety factor                     | γ <sub>Ms</sub> <sup>2)</sup>         | [-]  | 1,25       | 1,25     | 1,25  | 1,25  | 1,25  | 1,25  |  |

#### **RDI ANCHOR**

Performances

Characteristic resistance to shear loads

#### Annex C2

Table C3: Characteristic resistance and displacements (static and quasi-static loading)

| Anchor                                       |                                             |      | RDI ANCHOR |      |      |      |       |       |  |
|----------------------------------------------|---------------------------------------------|------|------------|------|------|------|-------|-------|--|
| Size                                         | M8                                          | M10  | M12        | M12D | M16  | M20  |       |       |  |
| Resistance to pry-out failure                |                                             |      |            |      |      |      |       |       |  |
| Factor for non-cracked concrete              | $k^{3)} = k_3^{4)} = k_8^{5)}$              | [-]  | 1,0        | 1,0  | 1,0  | 1,0  | 2,0   | 2,0   |  |
| Partial safety factor                        | γ <sub>Ms</sub> <sup>2)</sup>               | [-]  | 1,5        | 1,5  | 1,5  | 1,5  | 1,5   | 1,5   |  |
| Resistance to concrete edge failure          |                                             |      |            |      |      |      |       |       |  |
| Outside diameter of anchor                   | d <sub>nom</sub>                            | [mm] | 10         | 12   | 15   | 16   | 20    | 25    |  |
| Effective length of anchor under shear loads | l <sub>f</sub>                              | [mm] | 30         | 40   | 50   | 50   | 65    | 80    |  |
| Partial safety factor                        | γ <sub>Mc</sub> <sup>2)</sup>               | [-]  | 1,5        | 1,5  | 1,5  | 1,5  | 1,5   | 1,5   |  |
| Minimum member thickness                     | h <sub>min</sub>                            | [mm] | 100        | 100  | 100  | 100  | 130   | 160   |  |
| Minimum edge distance                        | C <sub>min</sub>                            | [mm] | 41         | 54   | 68   | 68   | 88    | 108   |  |
| Minimum spacing                              | S <sub>min</sub>                            | [mm] | 41         | 54   | 68   | 68   | 88    | 108   |  |
| Displacements under static and quasi-        | static loading                              |      |            |      |      |      |       |       |  |
| Tension and shear load in non-cracked co     | oncrete C20/25 to C5                        | 0/60 |            |      |      |      |       |       |  |
| Tension load and shear load                  | N = V                                       | [kN] | 4,44       | 6,91 | 6,40 | 9,92 | 11,46 | 23,86 |  |
| Short term tension displacement              | $\delta_{N0}$                               | [mm] | 0,98       | 3,54 | 3,06 | 2,73 | 1,15  | 4,26  |  |
| Long term tension displacement               | $\delta_{N^{\!\scriptscriptstyle{\infty}}}$ | [mm] | 0,50       | 0,50 | 0,38 | 0,50 | 0,50  | 0,50  |  |
| Short term shear displacement                | $\delta_{V0}$                               | [mm] | 0,98       | 3,54 | 3,06 | 2,73 | 1,15  | 4,26  |  |
| Long term shear displacement                 | $\delta_{V^\infty}$                         | [mm] | 0,50       | 0,50 | 0,38 | 0,50 | 0,50  | 0,50  |  |

| RDI | A NI | $\sim$ L | $\sim$ | D |
|-----|------|----------|--------|---|
| RUI | AIN  | UГ       | JU     | П |

#### **Performances** Characteristic resistance and displacements

#### **Annex C3**

<sup>1)</sup> Pull-out failure mode is not decisive
2) 3) Parameter for design acc. to ETAG 001 Annex C

Parameter for design acc. to CEN/TS 1992-4-4:2009
Parameter for design acc. to prEN 1992-4:2016



tel.: (+48 22) 825-04-71 (+48 22) 825-76-55 fax: (+48 22) 825-52-86

www.itb.pl





# European Technical Assessment

## ETA-17/0177 of 30/03/2017

#### **General Part**

Technical Assessment Body issuing the European Technical Assessment

Trade name of the construction product RDI ANCHOR

Product family to which the construction product belongs

Instytut Techniki Budowlanej

Deformation-controlled expansion anchors for multiple use for non-structural applications in concrete

**Manufacturer** 

Rex Fastening Systems (HK) Ltd. Unit 2005, 20/F, Enterprise Square 3 39 Wang Chiu Road Kowloon Bay, Hong Kong

Manufacturing plant(s)

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Manufacturing Plant no. 3

10 pages including 3 Annexes which form an integral part of this assessment

Guideline for European Technical Approval ETAG 001, Edition April 2013 "Metal anchors for use in concrete – Part 1: Anchors in general and Part 6: Anchors for multiple use for non-structural applications", used as European Assessment Document (EAD)

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

#### **Specific Part**

#### 1 Technical description of the product

The RDI ANCHOR are deformation-controlled expansion anchors. The anchors are made of zinc plated steel.

The anchor is installed in a drilled hole and anchored by deformation-controlled expansion.

The description of the product is given in Annex A.

## 2 Specification of the intended use in accordance with the applicable European Assessment Document (EAD)

The performances given in Section 3 are only valid if the anchors are used in compliance with the specifications and conditions given in Annex B.

The performances given in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer or the Technical Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

## 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Performance of the product

#### 3.1.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                          | Performance  |
|---------------------------------------------------|--------------|
| Characteristic resistance for all load directions | See Annex C1 |
| Edge distances and spacing                        | See Annex C1 |

#### 3.1.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance                               |
|--------------------------|-------------------------------------------|
| Reaction to fire         | Anchors satisfy requirements for Class A1 |
| Resistance to fire       | See Annex C2                              |

#### 3.1.3 Hygiene, health and the environment (BWR 3)

Regarding the dangerous substances clauses contained in this European Technical Assessment, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

#### 3.1.4 Safety and accessibility in use (BWR 4)

For Basic Requirement Safety in use the same criteria are valid as for Basic Requirement Mechanical resistance and stability (BWR 1).

#### 3.1.5 Sustainable use of natural resources (BWR 7)

No performance assessed.

#### 3.1.6 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B1 are kept.

#### 3.2 Methods used for the assessment

The assessment of fitness of the anchors for the declared intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with the ETAG 001 "Metal anchors for use in concrete", Part 1: "Anchors in general" and Part 6: "Anchors for multiple use for non-structural applications".

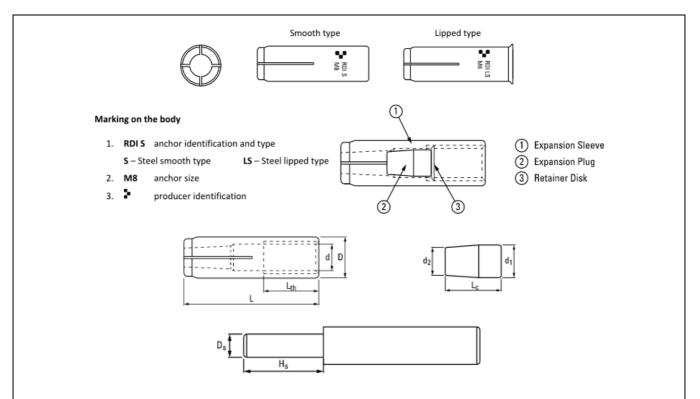
The assessment of the anchor for the intended use in relation to the requirements for resistance to fire has been made in accordance with the EOTA Technical Report TR 020 "Evaluation of anchorages in concrete concerning resistance to fire".

## 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision 97/161/EC of the European Commission the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table applies.

| Product                                             | Intended use                                                                                                                                    | Level or class | System |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|
| Metal anchors for use in concrete (light-duty type) | For use in redundant systems for fixing and/or supporting to concrete elements such as lightweight suspended ceilings, as well as installations | -              | 2+     |

# 5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document (EAD)


Technical details necessary for the implementation of the AVCP system are laid down in the control plan which is deposited at Instytut Techniki Budowlanej.

For type testing the results of the tests performed as part of the assessment for the European Technical Assessment shall be used unless there are changes in the production line or plant. In such cases the necessary type testing has to be agreed between Instytut Techniki Budowlanej and the notified body.

Issued in Warsaw on 30/03/2017 by Instytut Techniki Budowlanej

Marcin M. Kruk, PhD

Director of ITB



| Dimensions           |                 |             |            |     |         |                                                             |      |      |
|----------------------|-----------------|-------------|------------|-----|---------|-------------------------------------------------------------|------|------|
| Anchor size          |                 |             | М6         | M8  | M10H    | M10                                                         | M12  | M12D |
| Expansion sleeve     |                 |             |            |     |         |                                                             |      |      |
| Sleeve diameter      | D               | [mm]        | 8          | 10  | 12      | 12                                                          | 15   | 16   |
| Sleeve length        | L               | [mm]        | 25         | 30  | 30      | 40                                                          | 50   | 50   |
| Thread               | d               | [-]         | M6         | M8  | M10     | M10                                                         | M12  | M12  |
| Thread length        | L <sub>th</sub> | [mm]        | 11         | 13  | 12      | 17                                                          | 21   | 21   |
| Expansion plug       |                 |             |            |     |         |                                                             |      |      |
| Plug diameter        | d <sub>1</sub>  | [mm]        | 5,0        | 6,5 | 8,0     | 8,0                                                         | 10,1 | 10,1 |
| Plug diameter        | d <sub>2</sub>  | [mm]        | 4,0        | 5,5 | 6,9     | 6,5                                                         | 8,5  | 8,5  |
| Plug length          | Lc              | [mm]        | 10         | 12  | 11      | 15                                                          | 20   | 20   |
| Installation pin     |                 |             |            |     |         |                                                             |      |      |
| Setting pin diameter | Ds              | [mm]        | 4,8        | 6,6 | 7,8     | 7,8                                                         | 9,6  | 9,6  |
| Setting pin length   | Hs              | [mm]        | 15         | 18  | 18      | 25                                                          | 30   | 30   |
| Materials            |                 |             |            |     |         |                                                             |      |      |
| Element              | ement Material  |             |            |     | Protec  | Protection                                                  |      |      |
| Expansion sleeve     |                 | Q195 acc. t | o GB/T 700 |     | zinc co | zinc coating (≥ 5 μm);<br>electroplated acc. to EN ISO 4042 |      |      |
| Expansion plug       |                 | Q195 acc. t | o GB/T 700 |     |         |                                                             |      |      |

| RDI ANCHOR                                        | Annex A1                                           |
|---------------------------------------------------|----------------------------------------------------|
| Product description Characteristic of the product | of European<br>Technical Assessment<br>ETA-17/0177 |

#### SPECIFICATION OF INTENDED USE

#### Anchorages subject to:

- Multiple use for non-structural applications. The definition of multiple use according to the Member States is given on the informative Annex 1 of ETAG 001, Part 6.
- Static and quasi-static loads.
- Anchorages with requirements related to resistance to fire.

#### Base material:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum to C50/60 at maximum according to EN 206.
- Non-cracked and cracked concrete.

#### Use conditions (environmental conditions):

Structures subject to dry internal conditions.

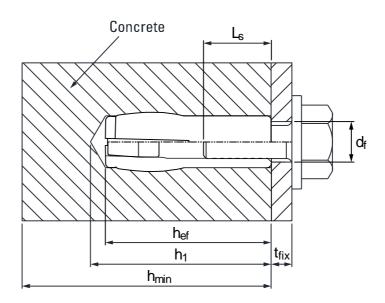
#### Design:

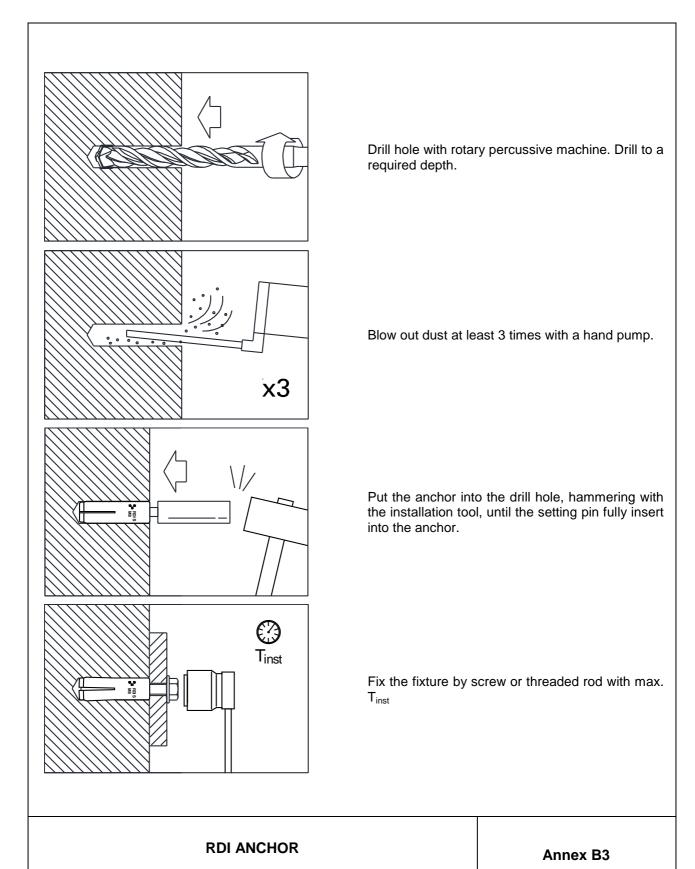
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be transmitted. The
  position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
  reinforcement or to supports, etc.).
- Anchorages under static and quasi-static loads are designed in accordance with ETAG 001, Annex C, design method B, Edition August 2010.
- The design of anchorages under fire exposure has to consider the conditions given in the EOTA Technical Report TR 020.

#### Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging any component of the anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools.
- Check of concrete being well compacted, e.g. without significant voids.
- Positioning of the drill holes without damaging the reinforcement.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
- Anchor installation such that the effective anchorage depth is complied with.

| RDI ANCHOR                    | Annex B1                                           |
|-------------------------------|----------------------------------------------------|
| Intended use<br>Specification | of European<br>Technical Assessment<br>ETA-17/0177 |





Table B1: Installation parameters

| Anchor                                    |                     |      | RDI ANCHOR |     |      |     |     |      |  |  |
|-------------------------------------------|---------------------|------|------------|-----|------|-----|-----|------|--|--|
| Size                                      |                     |      | М6         | M8  | M10H | M10 | M12 | M12D |  |  |
| Effective anchorage depth                 | h <sub>ef</sub>     | [mm] | 25         | 30  | 30   | 40  | 50  | 50   |  |  |
| Drill hole depth                          | h₁                  | [mm] | 28         | 33  | 33   | 43  | 54  | 54   |  |  |
| Drill hole diameter                       | $d_0$               | [mm] | 8          | 10  | 12   | 12  | 15  | 16   |  |  |
| Installation torque (max)                 | T <sub>inst</sub>   | [mm] | 4          | 8   | 15   | 15  | 35  | 35   |  |  |
| Thickness of concrete member (min)        | h <sub>min</sub>    | [mm] | 80         | 80  | 80   | 80  | 100 | 100  |  |  |
| Screwing depth (min)                      | L <sub>s, min</sub> | [mm] | 6          | 8   | 8    | 10  | 12  | 12   |  |  |
| Screwing depth (max)                      | L <sub>s, max</sub> | [mm] | 11         | 13  | 12   | 17  | 21  | 21   |  |  |
| Diameter of clearance hole in the fixture | d <sub>f</sub>      | [mm] | 7          | 9   | 12   | 12  | 14  | 14   |  |  |
| Spacing (min)                             | S <sub>min</sub>    | [mm] | 200        | 200 | 200  | 200 | 200 | 200  |  |  |
| Edge distance (min)                       | C <sub>min</sub>    | [mm] | 150        | 150 | 150  | 150 | 150 | 150  |  |  |

#### Fastening screws or anchor threaded rods:

Steel, property class 4.6 / 4.8 / 5.8 / 6.8 / 8.8 according to EN-ISO 898-1; thickness of galvanizing  $\geq$  5  $\mu m$ 

# RDI ANCHOR Annex B2 of European Technical Assessment ETA-17/0177



Intended use
Installation instruction and tools

**Table C1:** Characteristic resistance in concrete C20/25 to C50/60 (design acc. to ETAG 001, Annex C, method B)

| Anchor                                                    | RDI ANCHOR                     |           |      |      |      |      |       |       |
|-----------------------------------------------------------|--------------------------------|-----------|------|------|------|------|-------|-------|
| Size                                                      | M6                             | М8        | M10H | M10  | M12  | M12D |       |       |
| All load directions (fastening screw or threaded          | rod propert                    | y class ≥ | 4.6) |      |      |      |       |       |
| Characteristic resistance in concrete<br>C20/25 to C50/60 | $F_{Rk}$                       | [kN]      | 1,5  | 2,0  | 3,0  | 3,0  | 4,0   | 5,0   |
| Partial (installation) safety factor                      | γ <sub>2</sub>                 | [-]       | 1,4  | 1,4  | 1,4  | 1,4  | 1,4   | 1,4   |
| Spacing                                                   | S <sub>cr</sub>                | [mm]      | 200  | 200  | 200  | 200  | 200   | 200   |
| Edge distance                                             | C <sub>cr</sub>                | [mm]      | 150  | 150  | 150  | 150  | 150   | 150   |
| Minimum member thickness                                  | h <sub>min</sub>               | [mm]      | 80   | 80   | 80   | 80   | 100   | 100   |
| Shear load: steel failure with lever arm                  |                                |           |      |      |      |      | •     |       |
| Characteristic bending moment: screw class 4.6            | $M^0_{Rk,S}$                   | [Nm]      | 6,1  | 15,0 | 29,9 | 29,9 | 52,4  | 52,4  |
| Characteristic bending moment: screw class 4.8            | M <sup>0</sup> <sub>Rk,S</sub> | [Nm]      | 6,1  | 15,0 | 29,9 | 29,9 | 52,4  | 52,4  |
| Characteristic bending moment: screw class 5.8            | M <sup>0</sup> <sub>Rk,S</sub> | [Nm]      | 7,6  | 18,8 | 37,4 | 37,4 | 65,6  | 65,6  |
| Characteristic bending moment: screw class 6.8            | M <sup>0</sup> <sub>Rk,S</sub> | [Nm]      | 9,2  | 22,5 | 44,9 | 44,9 | 78,7  | 78,7  |
| Characteristic bending moment: screw class 8.8            | M <sup>0</sup> <sub>Rk,S</sub> | [Nm]      | 12,2 | 30,0 | 59,9 | 59,9 | 104,9 | 104,9 |

RDI ANCHOR

**Performances**Characteristic resistance

Annex C1

**Table C2:** Characteristic resistance under fire exposure in concrete C20/25 to C50/60 (design acc. to ETAG 001, Annex C, method B)

| Anchor                           |                           |      |                     | RDI AN | ICHOR |                 |      |     |
|----------------------------------|---------------------------|------|---------------------|--------|-------|-----------------|------|-----|
| Size                             |                           | М6   | M8                  | M10H   | M10   | M12             | M12D |     |
| Fire resistance class (fastening | 4.6)                      |      |                     |        |       |                 |      |     |
| R30                              |                           | [kN] | 0,2                 | 0,5    | 0,8   | 0,8             | 1,0  | 1,3 |
| R60                              | Characteristic resistance | [kN] | 0,2                 | 0,5    | 0,8   | 0,8             | 1,0  | 1,3 |
| R90                              | F <sub>Rk,fi</sub> 1)     | [kN] | 0,1                 | 0,4    | 0,8   | 0,8             | 1,0  | 1,1 |
| R120                             |                           | [kN] | 0,1                 | 0,3    | 0,6   | 0,6             | 0,8  | 0,8 |
| Spacing                          | S <sub>cr,fi</sub>        | [mm] |                     |        | 4 x   | h <sub>ef</sub> |      |     |
| Edge distance                    | C <sub>cr,fi</sub>        | [mm] | 2 x h <sub>ef</sub> |        |       |                 |      |     |

The design method covers anchors with a fire attack from one side only. In case of fire attack from more than one side, the edge distance shall be  $\geq$  300 mm. <sup>1)</sup> in the absence of other national regulations a partial safety factor  $\gamma_{m,fi}$  = 1,0 is recommended

| RDI | ΛÞ | ALC: | $\Box \cap$ | D |
|-----|----|------|-------------|---|

## **Performances**Characteristic resistance under fire exposure

#### Annex C2



tel.: (+48 22) 825-04-71 (+48 22) 825-76-55 fax: (+48 22) 825-52-86

www.itb.pl





# European Technical Assessment

ETA-17/0325 of 10/04/2017

#### **General Part**

**Technical Assessment Body issuing the European Technical Assessment** 

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

**Manufacturing plant** 

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Instytut Techniki Budowlanej

**CMH ANCHOR** 

Deformation-controlled expansion anchor made of galvanized steel for multiple use for non-structural applications in concrete

Construction Anchors Co., Ltd. 9F, No. 21, Sec. 3, Xinsheng S.Rd., Da'an Dist, Taipei City 106 Taiwan R.O.C.Hong Kong

Manufacturing Plant no. 4

9 pages including 3 Annexes which form an integral part of this assessment

Guideline for European Technical Approval ETAG 001, Edition April 2013 "Metal anchors for use in concrete – Part 1: Anchors in general and Part 6: Anchors for multiple use for non-structural applications", used as European Assessment Document (EAD)

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

#### **Specific Part**

#### 1 Technical description of the product

CMH ANCHOR of size Ø6 is deformation-controlled expansion anchor. CMH ANCHOR is made of galvanized steel. The anchor is installed in a drilled hole and anchored by deformation-controlled expansion.

An illustration of the product is given in Annex A1.

## 2 Specification of the intended use in accordance with the applicable European Assessment Document (EAD)

The performances given in Section 3 are only valid if the anchors are used in compliance with the specifications and conditions given in Annex B1 and B2.

The performances given in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer or the Technical Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

## 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Performance of the product

#### 3.1.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                          | Performance  |
|---------------------------------------------------|--------------|
| Characteristic resistance for all load directions | See Annex C1 |
| Edge distances and spacing                        | See Annex C1 |

#### 3.1.2 Safety in case of fire (BWR 2)

| Essential characteristic                      | Performance                               |
|-----------------------------------------------|-------------------------------------------|
| Reaction to fire                              | Anchors satisfy requirements for Class A1 |
| Characteristic resistance under fire exposure | See Annex C2                              |

#### 3.1.3 Hygiene, health and the environment (BWR 3)

Regarding the dangerous substances there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

#### 3.1.4 Safety and accessibility in use (BWR 4)

For Basic Requirement Safety in use the same criteria are valid as for Basic Requirement Mechanical resistance and stability (BWR 1).

#### 3.1.5 Sustainable use of natural resources (BWR 7)

No performance assessed.

#### 3.1.6 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B1 are kept.

#### 3.2 Methods used for the assessment

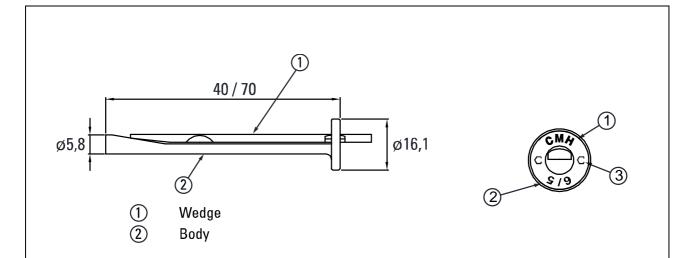
The assessment of fitness of the anchors for declared intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with the ETAG 001 "Metal anchors for use in concrete", Part 1: "Anchors in general" and Part 6: "Anchors for multiple use for non-structural applications".

The assessment of the anchor for the intended use in relation to the requirements for resistance to fire has been made in accordance with the EOTA Technical Report TR 020 "Evaluation of anchorages in concrete concerning resistance to fire".

## 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision 97/161/EC of the European Commission the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table applies.

| Product                                             | Intended use                                                                                                                                    | Level or class | System |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|
| Metal anchors for use in concrete (light-duty type) | For use in redundant systems for fixing and/or supporting to concrete elements such as lightweight suspended ceilings, as well as installations | _              | 2+     |


# 5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document (EAD)

Technical details necessary for the implementation of the AVCP system are laid down in the control plan which is deposited at Instytut Techniki Budowlanej.

For type testing the results of the tests performed as part of the assessment for the European Technical Assessment shall be used unless there are changes in the production line or plant. In such cases the necessary type testing has to be agreed between Instytut Techniki Budowlanej and the notified body.

Issued in Warsaw on 10/04/2017 by Instytut Techniki Budowlanej

Anna Panek, MSc Deputy Director of ITB



#### Marking on the body

1. **CMH** anchor identification

2. **6/5** anchor size / maximum fixture thickness

3. **C** producer identification

Table A1. CMH ANCHOR – dimensions and materials

| CMH ANCHOR          |       | CMH 6/5                                                                                                                            | CMH 6/35 |
|---------------------|-------|------------------------------------------------------------------------------------------------------------------------------------|----------|
| Anchor nominal size |       | (                                                                                                                                  | 6        |
| Length of wedge     | mm    | 43                                                                                                                                 | 73       |
| Length of shank     | mm 40 |                                                                                                                                    | 70       |
| Diameter            | mm    | 5,8                                                                                                                                |          |
| Materials           | wedge | steel 45 (GB/T 699) / C45 / 1.0503 acc. to EN 10277-2 (tensile strength $f_{uk}$ = 600 N/mm <sup>2</sup> ) zinc coated             |          |
| ।गवासावाऽ           | shank | steel ML08Al (GB/T 6478) / C8C / 1.0213 acc. to EN 10263-2 (tensile strength f <sub>uk</sub> = 420 N/mm <sup>2</sup> ) zinc coated |          |

| CMH ANCHOR                                        | Annex A1                                     |
|---------------------------------------------------|----------------------------------------------|
| Product description Characteristic of the product | of European Technical Assessment ETA-17/0325 |

#### SPECIFICATION OF INTENDED USE

#### Anchorages subject to:

- Multiple use for non-structural applications.
- Static and quasi-static loads.
- Anchorages with requirements related to resistance to fire.

#### Base material:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum to C50/60 at maximum according to EN 206.
- Cracked and non-cracked concrete.

#### Use conditions (environmental conditions):

Dry internal conditions.

#### Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete
  work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be transmitted. The
  position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
  reinforcement or to supports, etc.).
- Anchorages under static and quasi-static loads are designed in accordance with ETAG 001, Annex C, design method C, Edition August 2010.
- The design of anchorages under fire exposure has to consider the conditions given in the EOTA Technical Report TR 020.
- Fasteners are only to be used for multiple use for non-structural applications acc. to ETAG 001, Part 6, Edition August 2010.

#### Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools.
- Edge distance and spacing not less than the specified values without minus tolerances.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of load application.
- Anchor installation such that the effective anchorage depth is complied with; the compliance is ensured if the thickness of the fixture is not larger than the maximum values given in Annex B2.
- Anchor expansion by impact on the wedge of the anchor; the anchor is properly set if the wedge is fully dropped in.
- Anchor can only be set once.

| CMH ANCHOR                | Annex B1                                           |
|---------------------------|----------------------------------------------------|
| Intended use Intended use | of European<br>Technical Assessment<br>ETA-17/0325 |

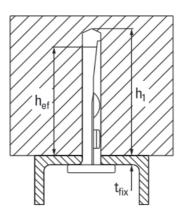
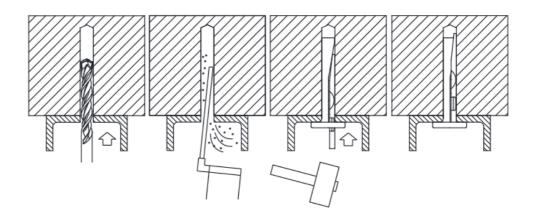




Table B1: Installation parameters

| CMH ANCHOR                           |                  | CMH 6/5 | CMH 6/35 |     |  |
|--------------------------------------|------------------|---------|----------|-----|--|
| Diameter of drill hole               | $d_0$            | mm      |          | 6   |  |
| Cutting diameter of drill bit        | d <sub>cut</sub> | mm      | ≤        | 6,4 |  |
| Depth of drill hole                  | h₁≥              | mm      | 4        | 10  |  |
| Effective anchorage depth            | h <sub>ef</sub>  | mm      | ;        | 32  |  |
| Minimum thickness of concrete member | h <sub>min</sub> | mm      | 8        | 30  |  |
| Maximum thickness of the fixture     | t <sub>fix</sub> | mm      | 5        | 35  |  |
| Spacing                              | S <sub>cr</sub>  | mm      | 20       | 00  |  |
| Edge distance                        | C <sub>cr</sub>  | mm      | 15       | 50  |  |



#### **CMH ANCHOR**

## **Intended use**Installation parameters and installation instruction

#### Annex B2

Table C1: Characteristic resistance (design acc. to ETAG 001, Annex C, method C)

| CMH ANCHOR                                                                    |                       |      | CMH-6/5<br>CMH-6/35 |       |
|-------------------------------------------------------------------------------|-----------------------|------|---------------------|-------|
| All load directions (tension and shear)                                       |                       |      |                     |       |
| Characteristic resistance in cracked or non-cracked concrete C20/25 to C50/60 |                       |      | 4,0                 |       |
| Partial safety factor                                                         |                       | -    | 1                   | ,0    |
| Shear load with lever arm                                                     |                       |      |                     |       |
| Characteristic bending moment                                                 |                       | [Nm] | 6,97                |       |
| Partial safety factor $\gamma_{M}$ [-                                         |                       | [-]  | 1,25                |       |
| Displacements in cracked or non-cracked concrete C20/25 to C50/60             |                       | )/60 | Tension             | Shear |
| Applied loads                                                                 | F                     | [kN] | 1,90                | 1,79  |
| Displacements                                                                 | δ <sub>N0</sub>       | [mm] | 1,85                | 0,22  |
| Displacements                                                                 | $\delta_{N_{\infty}}$ | [mm] | 0,13                | 0,32  |

| CMH ANCHOR                             | Annex C1 of European                |  |  |
|----------------------------------------|-------------------------------------|--|--|
| Performances Characteristic resistance | Technical Assessment<br>ETA-17/0325 |  |  |

**Table C2:** Characteristic resistance under fire exposure in concrete C20/25 to C50/60 – CMH ANCHOR (design acc. to ETAG 001, Annex C, method C)

| CMH ANCHOR                |                    |      | CMH-6/5<br>CMH-6/35 |      |      |      |
|---------------------------|--------------------|------|---------------------|------|------|------|
| All load directions       |                    |      |                     |      |      |      |
| Fire resistance class     |                    |      | R30                 | R60  | R90  | R120 |
| Characteristic resistance | $F_{Rk,fi}$        | [kN] | 0,21                | 0,19 | 0,14 | 0,10 |
| Spacing                   | S <sub>cr,fi</sub> | [mm] | 200                 |      |      |      |
| Edge distance             | C <sub>cr,fi</sub> | [mm] | 150                 |      |      |      |

The design method covers anchors with a fire attack from one side only. In case of fire attack from more than one side, the edge distance shall be  $\geq$  300 mm.

| CMH ANCHOR                                                 | Annex C2                                           |
|------------------------------------------------------------|----------------------------------------------------|
| Performances Characteristic resistance under fire exposure | of European<br>Technical Assessment<br>ETA-17/0325 |



tel.: (+48 22) 825-04-71 (+48 22) 825-76-55

fax: (+48 22) 825-52-86

www.itb.pl





# European Technical Assessment

#### ETA-17/0595 of 29/06/2017

#### **General Part**

**Technical Assessment Body issuing the European Technical Assessment** 

Instytut Techniki Budowlanej

Trade name of the construction product

CT BOLT 7

Product family to which the construction product belongs

Torque controlled expansion anchor of sizes M6, M8, M10, M12 and M16 for use in non-cracked concrete

Manufacturer

Construction Anchors Co., Ltd. 9F, No. 21, Sec. 3, Xinsheng S.Rd., Da'an Dist, Taipei City 106
Taiwan R.O.C.

**Manufacturing plant** 

Plant 2

This European Technical Assessment contains

11 pages including 3 Annexes which form an integral part of this assessment

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

European Assessment Document (EAD) 330232-00-0601 "Mechanical fasteners for use in concrete"

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

#### **Specific Part**

#### 1 Technical description of the product

The anchor CT BOLT 7 in the sizes of M6, M8, M10, M12 and M16 is an anchor made of galvanized steel which is placed into a drill hole and anchored by torque-controlled expansion.

The description of the product is given in Annex A1 to A2.

## 2 Specification of the intended use in accordance with the applicable European Assessment Document (EAD)

The performances given in Section 3 are only valid if the anchors are used in compliance with the specifications and conditions given in Annex B1 to B3.

The performances given in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer or the Technical Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

## 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Performance of the product

#### 3.1.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                              | Performance  |
|---------------------------------------------------------------------------------------|--------------|
| Characteristic tension resistance (static and quasi-static loading) and displacements | See Annex C1 |
| Characteristic shear resistance (static and quasi-static loading) and displacements   | See Annex C2 |

#### 3.1.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance                               |
|--------------------------|-------------------------------------------|
| Reaction to fire         | Anchors satisfy requirements for Class A1 |
| Resistance to fire       | No performance assessed                   |

#### 3.2 Methods used for the assessment

The assessment of fitness of the anchors for the declared intended use in relation to the requirements for mechanical resistance and stability and safety in case of fire in the sense of the Basic Requirements 1 and 2 has been made in accordance with the EAD 330232-00-0601.

## 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

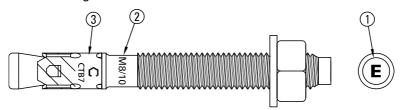
According to Decision 96/582/EC of the European Commission the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

| Product                           | Intended use                                                                                                                  | Level or class | System |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------|--------|
| Metal anchors for use in concrete | For fixing and/or supporting to concrete structural elements (which contributes to the stability of the works) or heavy units | -              | 1      |

# 5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document (EAD)

Technical details necessary for the implementation of the AVCP system are laid down in the control plan which is deposited at Instytut Techniki Budowlanej.

For type testing the results of the tests performed as part of the assessment for the European Technical Assessment shall be used unless there are changes in the production line or plant. In such cases the necessary type testing has to be agreed between Instytut Techniki Budowlanej and the notified body.


Issued in Warsaw on 29/06/2017 by Instytut Techniki Budowlanej

Anna Panek, MSc
Deputy Director of ITB



- Washer
- 3 Cold formed cone bolt
- 4) Expansion sleeve

Example of the product marking:



#### 1. Marking on bolt head

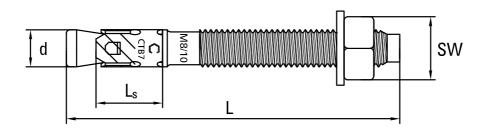
Length of anchor (mm):

| Code      | Α            | В   | С            | D            | Е            | F            | G            | Н   | ı            | J            | K   | L            | M            |
|-----------|--------------|-----|--------------|--------------|--------------|--------------|--------------|-----|--------------|--------------|-----|--------------|--------------|
| ≥         | -            | 50  | 60           | 70           | 80           | 90           | 100          | 110 | 120          | 130          | 140 | 150          | 160          |
| <         | 50           | 60  | 70           | 80           | 90           | 100          | 110          | 120 | 130          | 140          | 150 | 160          | 170          |
|           |              |     |              | _            | _            | _            | -            |     |              |              | V   |              | _            |
| Code      | N            | 0   | Р            | Q            | R            | S            | T            | U   | V            | W            | X   | Υ            | Z            |
| Code<br>≥ | <b>N</b> 170 | 180 | <b>P</b> 190 | <b>Q</b> 200 | <b>R</b> 220 | <b>S</b> 240 | <b>T</b> 260 | 280 | <b>V</b> 300 | <b>W</b> 320 | _ X | <b>Y</b> 360 | <b>Z</b> 380 |

#### 2. Marking on cone bolt

M8 thread size

10 maximum fixture thickness


3. Marking on expansion sleeve

C producer identificationCTB7 anchor identification

| CT BOLT 7                                         | Annex A1                                           |
|---------------------------------------------------|----------------------------------------------------|
| Product description Characteristic of the product | of European<br>Technical Assessment<br>ETA-17/0595 |

**Table A1: Dimensions** 

| Anchor size              |                       | M6   | M8   | M10 | M12 | M16 |
|--------------------------|-----------------------|------|------|-----|-----|-----|
| Total Langth             | Min.                  | 55   | 65   | 75  | 95  | 120 |
| Total Length             | Max.                  | 200  | 210  | 230 | 250 | 250 |
| Thickness of the fixture | Min.                  | 1    | 1    | 1   | 1   | 1   |
| Thickness of the fixture | Max. [mm]             | 145  | 145  | 155 | 155 | 130 |
| Length Expansion Sleeve  | e L <sub>s</sub> [mm] | 11,5 | 14,5 | 18  | 22  | 24  |
| Thread Diameter          | d <sub>th</sub>       | 6    | 8    | 10  | 12  | 16  |
| Width Torque Wrench      | SW [mm]               | 10   | 13   | 17  | 19  | 24  |



**Table A2: Materials** 

| Designation      | Material                                                            | Protection                        |
|------------------|---------------------------------------------------------------------|-----------------------------------|
| Threaded bolt    | Carbon steel<br>EN ISO 898-1 class 5.8                              | Zinc plated ≥ 5 µm<br>EN ISO 4042 |
| Expansion sleeve | Carbon steel                                                        | Zinc plated ≥ 5 µm<br>EN ISO 4042 |
| Hexagonal nut    | Carbon steel DIN 934 class 8                                        | Zinc plated ≥ 5 µm<br>EN ISO 4042 |
| Washer           | Carbon steel DIN 125 or EN ISO 7089 DIN 9021 or EN ISO 7083 DIN 440 | Zinc plated ≥ 5 μm<br>EN ISO 4042 |

| CT BOLT 7                                    | Annex A2                                     |
|----------------------------------------------|----------------------------------------------|
| Product description Dimensions and materials | of European Technical Assessment ETA-17/0595 |

#### SPECIFICATION OF INTENDED USE

# Anchorages subject to:

Static and quasi-static loads: sizes from M6 to M16.

#### Base material:

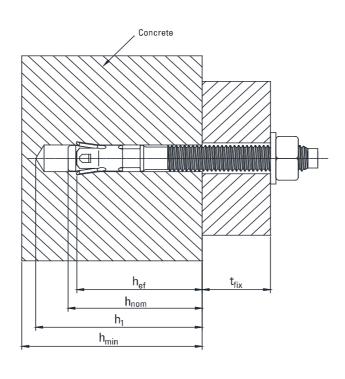
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum to C50/60 at maximum according to EN 206.
- Non cracked concrete: sizes from M6 to M16.

#### Use conditions (environmental conditions):

Structures subject to dry internal conditions.

#### Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be transmitted. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static and quasi-static loads are designed in accordance with EOTA Technical Report TR 055 (ETAG 001 Annex C, CEN/TS 1992-4-4:2009 and prEN 1992-4:2016).


#### Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging any component of the anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools.
- Check of concrete being well compacted, e.g. without significant voids.
- Positioning of the drill holes without damaging the reinforcement.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
- Cleaning of the hole of drilling dust.
- Anchor installation such that the effective anchorage depth is complied with.
- Application of the torque moment given in Annex B2 using a calibrated torque wrench.

| CT BOLT 7                    | Annex B1                                           |
|------------------------------|----------------------------------------------------|
| Intended use<br>Intended use | of European<br>Technical Assessment<br>ETA-17/0595 |

Table B1: Installation parameters

| Anchor size                               |                        | M6  | M8   | M10  | M12 | M16 |
|-------------------------------------------|------------------------|-----|------|------|-----|-----|
| Nominal drill hole diameter               | d <sub>o</sub> [mm]    | 6   | 8    | 10   | 12  | 16  |
| Depth of drill hole                       | $h_1 \ge [mm]$         | 55  | 65   | 70   | 90  | 110 |
| Embedment depth in concrete               | h <sub>nom</sub> [mm]  | 46  | 53   | 60   | 77  | 97  |
| Effective anchorage depth                 | h <sub>ef</sub> [mm]   | 40  | 45   | 51   | 66  | 80  |
| Diameter of clearance hole in the fixture | d <sub>f</sub> ≤ [mm]  | 7   | 9    | 12   | 14  | 18  |
| Installation torque moment                | T <sub>inst</sub> [Nm] | 5   | 15   | 25   | 45  | 100 |
| Minimum thickness of base material        | h <sub>min</sub> [mm]  | 100 | 100  | 105  | 135 | 160 |
| Minimum spacing                           | s <sub>min</sub> [mm]  | 60  | 67,5 | 76,5 | 99  | 120 |
| Minimum edge distance                     | c <sub>min</sub> [mm]  | 60  | 67,5 | 76,5 | 99  | 120 |



| CT BOLT 7                            | Annex B2                                           |
|--------------------------------------|----------------------------------------------------|
| Intended use Installation parameters | of European<br>Technical Assessment<br>ETA-17/0595 |

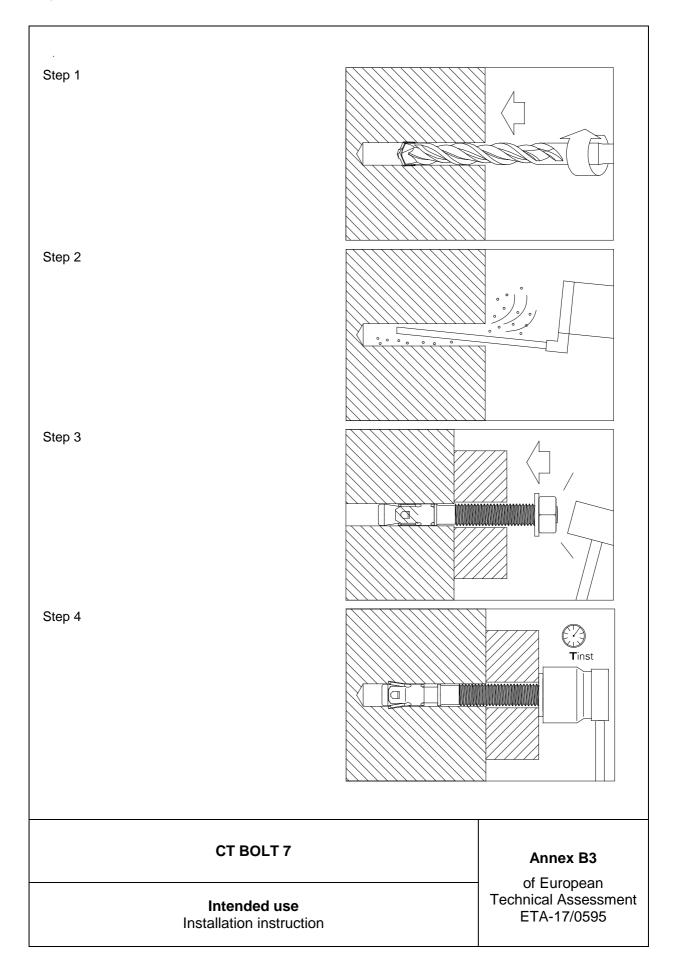



Table C1: Performance under tension loads in non-cracked concrete (static and quasi static loading)

| Anchor                                  |                            |                                           | CT BOLT 7 |        |         |         |         |      |
|-----------------------------------------|----------------------------|-------------------------------------------|-----------|--------|---------|---------|---------|------|
| Diameter                                |                            |                                           | RCW M6    | RCW M8 | RCW M10 | RCW M12 | RCW M16 |      |
| Steel failure                           |                            |                                           |           |        |         |         |         |      |
| Characteristic resis                    | tance                      | $N_{Rk,s}$                                | [kN]      | 6,9    | 14,1    | 21,5    | 33,2    | 62,3 |
| Partial safety factor                   | •                          | γ <sub>Ms</sub> 1)                        | [-]       | 1,50   | 1,50    | 1,50    | 1,50    | 1,50 |
| Pullout failure                         |                            |                                           |           |        |         |         |         |      |
| Characteristic resis<br>concrete C20/25 | tance in non-cracked       | $N_{Rk,p}$                                | [kN]      | 4      | 9       | 12      | 16      | 30   |
| Installation safety fa                  | actor                      | $\gamma_2^{(2)} = \gamma_{inst}^{(3)(4)}$ | [-]       | 1,0    | 1,0     | 1,0     | 1,2     | 1,2  |
|                                         | concrete C30/37            |                                           | [-]       | 1,08   | 1,08    | 1,08    | 1,08    | 1,08 |
| Increasing factor                       | concrete C40/50            | Ψc                                        | [-]       | 1,15   | 1,15    | 1,15    | 1,15    | 1,15 |
|                                         | concrete C50/60            |                                           | [-]       | 1,19   | 1,19    | 1,19    | 1,19    | 1,19 |
| Concrete cone fai                       | lure and splitting failure | )                                         |           |        |         |         |         |      |
| Effective embedme                       | ent depth                  | h <sub>ef</sub>                           | [mm]      | 40     | 45      | 51      | 66      | 80   |
| Factor for non-cracked concrete         |                            | $k_1^{(2)} = k_{ucr}^{(3)}$               | [-]       | 10,1   | 10,1    | 10,1    | 10,1    | 10,1 |
| Factor for non-cracked concrete         |                            | k <sub>ucr,N</sub> 4)                     | [-]       | 11,0   | 11,0    | 11,0    | 11,0    | 11,0 |
| Installation safety factor              |                            | $\gamma_2^{(2)} = \gamma_{inst}^{(3)(4)}$ | [-]       | 1,0    | 1,0     | 1,0     | 1,2     | 1,2  |
|                                         | concrete C30/37            | Ψ <sub>c</sub>                            | [-]       | 1,08   | 1,08    | 1,08    | 1,08    | 1,08 |
| Increasing factor                       | concrete C40/50            |                                           | [-]       | 1,15   | 1,15    | 1,15    | 1,15    | 1,15 |
| •                                       | concrete C50/60            |                                           | [-]       | 1,19   | 1,19    | 1,19    | 1,19    | 1,19 |
| Characteristic resis concrete           | tance for splitting        | $N^0_{Rk,sp}$                             | [kN]      | 4      | 9       | 12      | 16      | 30   |
| Characteristic                          | concrete cone failure      | S <sub>cr,N</sub>                         | [mm]      | 120    | 135     | 155     | 200     | 240  |
| spacing                                 | splitting failure          | S <sub>cr,sp</sub>                        | [mm]      | 200    | 225     | 306     | 330     | 480  |
| Characteristic                          | concrete cone failure      | C <sub>cr,N</sub>                         | [mm]      | 60     | 70      | 80      | 100     | 120  |
| edge distance                           | splitting failure          | C <sub>cr,sp</sub>                        | [mm]      | 100    | 113     | 153     | 165     | 240  |
| Displacements un                        | der tension load           |                                           |           |        |         |         |         |      |
| Tension load in nor                     | n-cracked concrete C20/2   | 25 to C50/60                              |           |        |         |         |         |      |
| Tension load                            |                            | N                                         | [kN]      | 2,7    | 6,5     | 8,0     | 8,1     | 15,8 |
| Short term tension                      | displacement               | $\delta_{N0}$                             | [mm]      | 0,4    | 0,5     | 0,7     | 0,4     | 0,6  |
| Long term tension                       | displacement               | δ <sub>N∞</sub>                           | [mm]      | 0,9    | 0,9     | 0,9     | 0,9     | 0,9  |

<sup>1)</sup> In the absence of other national regulations

CT BOLT 7

**Performances** 

Characteristic resistance under tension loads. Displacements

Annex C1

of European Technical Assessment ETA-17/0595

<sup>&</sup>lt;sup>2)</sup> Parameter for design acc. ETAG 001 Annex C

<sup>&</sup>lt;sup>3)</sup> Parameter for design acc. CEN/TS 1992-4-4:2009

<sup>&</sup>lt;sup>4)</sup> Parameter for design acc. prEN 1992-4:2016

Table C2: Performance under shear loads in non-cracked concrete (static and quasi static loading)

| Anchor                                       |                                |      | CT BOLT 7 |        |         |         |         |
|----------------------------------------------|--------------------------------|------|-----------|--------|---------|---------|---------|
| Diameter                                     |                                |      | RCW M6    | RCW M8 | RCW M10 | RCW M12 | RCW M16 |
| Steel failure without lever arm              |                                |      |           |        |         |         |         |
| Characteristic resistance                    | $V_{Rk,s}$                     | [kN] | 4,0       | 7,3    | 11,6    | 16,9    | 31,4    |
| Factor considering ductility                 | $k^{2)} = k_2^{3)} = k_7^{4)}$ | [-]  | 0,8       | 0,8    | 0,8     | 0,8     | 0,8     |
| Partial safety factor                        | γ <sub>Ms</sub> 1)             | [-]  | 1,25      | 1,25   | 1,25    | 1,25    | 1,25    |
| Steel failure with lever arm                 |                                |      |           |        |         |         |         |
| Characteristic bending resistance            | $M^0_{Rk,s}$                   | [Nm] | 6,1       | 15,0   | 29,9    | 52,4    | 133,2   |
| Partial safety factor                        | γ <sub>Ms</sub> 1)             | [-]  | 1,25      | 1,25   | 1,25    | 1,25    | 1,25    |
| Concrete pry-out failure                     |                                |      |           |        |         |         |         |
| Factor for non-cracked concrete              | $k^{2)} = k_3^{3)} = k_8^{4)}$ | [-]  | 1,0       | 1,0    | 1,0     | 2,0     | 2,0     |
| Partial safety factor                        | γ <sub>Mc</sub> 1)             | [-]  | 1,5       | 1,5    | 1,5     | 1,5     | 1,5     |
| Concrete edge failure                        |                                |      |           |        |         |         |         |
| Outside diameter on anchor                   | d <sub>nom</sub>               | [mm] | 6         | 8      | 10      | 12      | 16      |
| Effective length of anchor under shear loads | I <sub>f</sub>                 | [mm] | 40        | 45     | 51      | 66      | 80      |
| Partial safety factor                        | γ <sub>Mc</sub> 1)             | [-]  | 1,5       | 1,5    | 1,5     | 1,5     | 1,5     |
| Minimum member thickness                     | h <sub>min</sub>               | [mm] | 100       | 100    | 105     | 135     | 160     |
| Minimum edge distance                        | C <sub>min</sub>               | [mm] | 60        | 67,5   | 76,5    | 99      | 120     |
| Minimum spacing                              | S <sub>min</sub>               | [mm] | 60        | 67,5   | 76,5    | 99      | 120     |
| Displacements under shear load               |                                |      |           |        |         |         |         |
| Shear load in non-cracked concrete C20/2     | 5 to C50/60                    |      |           |        |         |         |         |
| Shear load                                   | V                              | [kN] | 3,3       | 6,0    | 7,3     | 8,0     | 15,0    |
| Short term tension displacement              | $\delta_{\text{VO}}$           | [mm] | 0,8       | 1,8    | 1,8     | 2,0     | 2,0     |
| Long term tension displacement               | δν∞                            | [mm] | 1,2       | 2,7    | 2,7     | 3,0     | 3,0     |

<sup>1)</sup> In the absence of other national regulations

CT BOLT 7

**Performances** 

Characteristic resistance under shear loads. Displacements

Annex C2

of European Technical Assessment ETA-17/0595

 $<sup>^{\</sup>rm 2)}$  Parameter for design acc. ETAG 001 Annex C

<sup>&</sup>lt;sup>3)</sup> Parameter for design acc. CEN/TS 1992-4-4:2009

<sup>&</sup>lt;sup>4)</sup> Parameter for design acc. prEN 1992-4:2016



# Centre Scientifique et Technique du Bâtiment

84 avenue Jean Jaurès CHAMPS-SUR-MARNE F-77447 Marne-la-Vallée Cedex 2

Tél.: (33) 01 64 68 82 82 Fax: (33) 01 60 05 70 37





# European Technical Assessment

ETA-16/0573 dated 20/09/2017

English translation prepared by CSTB - Original version in French language

#### **General Part**

Nom commercial Trade name CT Bolt 1

Famille de produit Product family

Cheville métallique à expansion par vissage à couple contrôlé, de fixation dans le béton fissuré et non fissuré diamètres M8, M10, M12 et M16

Torque-controlled expansion anchor for use in cracked and uncracked concrete: sizes M8, M10, M12 and M16

Titulaire Manufacturer Construction Anchors Co. Ltd. 9F, No.21, Sec. 3, Xinsheng S. Rd., Da'an Dist,

Taipei City 106, Taiwan. R.O.C.

Usine de fabrication Manufacturing plants

Plant 1

Cette evaluation contient: *This Assessment contains* 

13 pages incluant 10 pages d'annexes qui font partie

intégrante de cette évaluation

13 pages including 10 pages of annexes which form an

integral part of this assessment

Base de l'ETE Basis of ETA EAD 330232-00-0601, "Ancrages mécaniques dans le béton" EAD 330232-00-0601, "Mechanical fasteners for use in concrete"

Cette évaluation remplace: ETE-16/0573 délivrée le 01/08/2016

This Assessment replaces ETA-16/0573 issued on 01/08/2016

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such..

# **Specific Part**

# 1 Technical description of the product

The CT Bolt 1 anchor is an anchor made of zinc electroplated steel which is placed into a drilled hole and anchored by torque-controlled expansion.

The anchor is placed into a drilled hole and anchored by torque-controlled expansion.

The illustration and the description of the product are given in Annexes A.

#### 2 Specification of the intended use

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annexes B.

The provisions made in this European technical assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

# 3 Performance of the product

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                       | Performance  |
|------------------------------------------------|--------------|
| Characteristic tension resistance              | See Annex C1 |
| Characteristic shear resistance                | See Annex C2 |
| Displacements                                  | See Annex C5 |
| Characteristic resistance under seismic action | See Annex C6 |

# 3.2 Safety in case of fire (BWR 2)

| Essential characteristic                     | Performance                                  |
|----------------------------------------------|----------------------------------------------|
| Reaction to fire                             | Anchorages satisfy requirements for Class A1 |
| Characteristic tension resistance under fire | See Annex C3                                 |
| Characteristic shear resistance under fire   | See Annex C4                                 |

# 3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances contained in this European technical approval, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

#### 3.4 Safety in use (BWR 4)

For Basic requirement Safety in use the same criteria are valid as for Basic Requirement Mechanical resistance and stability.

## 3.5 Protection against noise (BWR 5)

Not relevant.

# 3.6 Energy economy and heat retention (BWR 6)

Not relevant.

#### 3.7 Sustainable use of natural resources ( (BWR 7)

For the sustainable use of natural resources no performance was determined for this product.

# 3.8 General aspects relating to fitness for use

Durability and Serviceability are only ensured if the specifications of intended use according to Annex B1 are kept.

# 4 Assessment and verification of constancy of performance (AVCP)

According to the Decision 96/582/EC of the European Commission<sup>1</sup>, as amended, the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

| Product                           | Intended use                                                                                                                   | Level or class | System |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------|--------|
| Metal anchors for use in concrete | For fixing and/or supporting to concrete, structural elements (which contributes to the stability of the works) or heavy units | _              | 1      |

## 5 Technical details necessary for the implementation of the AVCP system

Technical details necessary for the implementation of the Assessment and verification of constancy of performance (AVCP) system are laid down in the control plan deposited at Centre Scientifique et Technique du Bâtiment.

The manufacturer shall, on the basis of a contract, involve a notified body approved in the field of anchors for issuing the certificate of conformity CE based on the control plan.

# The original French version is signed by

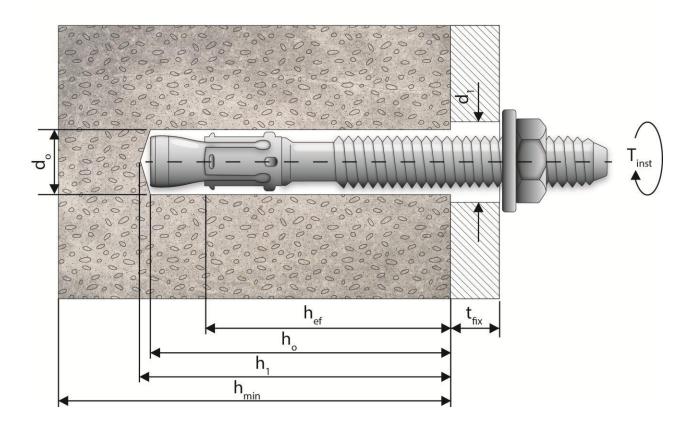
Charles Baloche Technical Director

Official Journal of the European Communities L 254 of 08.10.1996

# **Hex head version:**



Marking on the bolt:

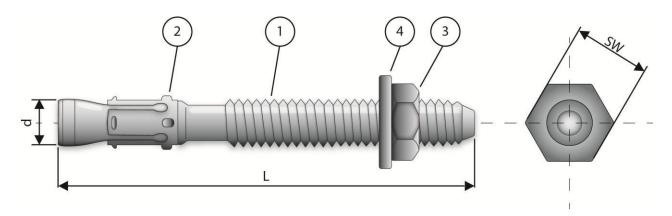

MX/L, where:

MX = thread diameter L = total lengh

Marking on the clip:

CT1 **C** 

# Intended use:




Intended use:

Use in cracked or uncracked concrete in dry internal conditions

| CT Bolt 1                                   |          |
|---------------------------------------------|----------|
| Product description Installation conditions | Annex A1 |

# **Different parts of the anchor:**



**Table 1: Materials** 

| Part | Designation    | Material                                                          | Protection       |
|------|----------------|-------------------------------------------------------------------|------------------|
| 1    | Thread bolt    | Coldform steel, grade C-1035                                      | Zinc plated 5 μm |
| 2    | Expansion clip | Stainless steel                                                   | -                |
| 3    | Washer         | DIN 125 or EN ISO 7089<br>DIN 9021 or DIN 440 or D IN EN ISO 7093 | Zinc plated      |
| 4    | Hexagonal nut  | DIN 934<br>Grade 8 acc. to DIN 267-4                              | Zinc plated      |

| CT Bolt 1          |          |
|--------------------|----------|
| Product descripion | Annex A2 |
| Material           |          |

# Specifications of intended use

# **Anchorages subject to:**

• Static, quasi-static and fire.

## **Base materials:**

- Cracked concrete and non-cracked concrete
- Reinforced or unreinforced normal weight concrete of strength classes C 20/25 at least to C50/60 at most according to EN 206: 2000-12.

# **Use conditions (Environmental conditions):**

Structures subject to dry internal conditions.

#### Design:

- The anchorages are designed in accordance with the ETAG001 Annex C "Design Method for Anchorages" or CEN/TS 1992-4-4 " Design of fastenings for use in concrete" under the responsibility of an engineer experienced in anchorages and concrete work.
- For application with resistance under fire exposure the anchorages are designed in accordance with method given in TR020 "Evaluation of Anchorage in Concrete concerning Resistance to Fire".
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.

## **Installation:**

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools.
- Effective anchorage depth, edge distances and spacing not less than the specified values without minus tolerances.
- Hole drilling by hammer drill.
- Cleaning of the hole of drilling dust.
- Application of specified torque moment using a calibrated torque wrench.
- In case of aborted hole, drilling of new hole at a minimum distance of twice the depth of the aborted hole, or smaller distance provided the aborted drill hole is filled with high strength mortar and no shear or oblique tension loads in the direction of aborted hole.

| CT Bolt 1      | A D4     |
|----------------|----------|
| Intended Use   | Annex B1 |
| Specifications |          |
|                |          |

**Table 2: Anchor dimensions** 

|                        |      |                    |      | M8  | M10 | M12 | M16 |
|------------------------|------|--------------------|------|-----|-----|-----|-----|
| Longth of the ancher   | Min. |                    | [mm] | 60  | 85  | 90  | 115 |
| Length of the anchor   | Max. | L                  | [mm] | 240 | 220 | 220 | 220 |
|                        | Min. | 4                  | [mm] | 1   | 1   | 1   | 1   |
| Fixture thickness      | Max. | - t <sub>fix</sub> | [mm] | 185 | 140 | 130 | 100 |
| Length expansion sleev | 'e   | I <sub>clip</sub>  | [mm] | 14  | 18  | 22  | 26  |
| Width torque wrench    |      | SW                 | [mm] | 13  | 17  | 19  | 24  |

Table 3: Installation data

|                               |                   |      | M8     | M10     | M12    | M16    |
|-------------------------------|-------------------|------|--------|---------|--------|--------|
| Drill hole diameter           | d <sub>cut</sub>  | [mm] | ≤ 8,45 | ≤ 10,45 | ≤ 12,5 | ≤ 16,5 |
| Drill hole depth              | h <sub>1</sub>    | [mm] | 55     | 75      | 75     | 100    |
| Embedment depth               | h <sub>ef</sub>   | [mm] | 40     | 60      | 60     | 80     |
| Installation torque           | T <sub>inst</sub> | [Nm] | 30     | 50      | 70     | 130    |
| Diameter through hole fixture | d <sub>f</sub>    | [mm] | 9      | 12      | 14     | 18     |
|                               | -                 |      | -      | -       | -      |        |
| Min. member thickness         | h <sub>min</sub>  | [mm] | 100    | 120     | 120    | 160    |
|                               |                   |      |        |         |        |        |
| Minimum edge distance         | C <sub>min</sub>  | [mm] | 65     | 60      | 80     | 85     |
| Minimum spacing               | Smin              | [mm] | 65     | 150     | 80     | 85     |

| CT Bolt 1                            | Annay D2 |
|--------------------------------------|----------|
| Intended Use Installation parameters | Annex B2 |

Table 4: Characteristic values for tension loads in case of static and quasi static loading for design method A

|                       |                               |      | М8   | M10  | M12  | M16  |
|-----------------------|-------------------------------|------|------|------|------|------|
| Steel failure         |                               |      |      |      |      |      |
| Char. resistance      | $N_{Rk,s}$                    | [kN] | 22,2 | 31,6 | 43,4 | 75,4 |
| Partial safety factor | γ <sub>Ms</sub> <sup>1)</sup> | [-]  |      | ,    | 1,88 |      |

| Pullout failure $N_{Rk,p} = \Psi_c \times N^0_{Rk,p}$     |                 |                                   |      |         |    |    |    |  |
|-----------------------------------------------------------|-----------------|-----------------------------------|------|---------|----|----|----|--|
| Char. resistance in                                       | cracked         | $N^0_{Rk,p}$                      | [kN] | 3       | 9  | 12 | 12 |  |
| concrete C20/25                                           | non-cracked     | $N^0_{Rk,p}$                      | [kN] | 6       | 12 | 12 | 35 |  |
| Partial safety factor for cracked or non-cracked concrete |                 | $\gamma_2 = \gamma_{\text{inst}}$ | [-]  | 1,2 1,4 |    | ,4 |    |  |
|                                                           | concrete C30/37 |                                   | [-]  | 1,22    |    |    |    |  |
| Increasing factor for N <sub>RK</sub>                     | concrete C40/50 | $\Psi_{c}$                        | [-]  | 1,41    |    |    |    |  |
|                                                           | concrete C50/60 |                                   | [-]  | 1,55    |    |    |    |  |

| Concrete cone failu                                      | re and splitting failure |                                  |      |                               |          | <u>.                                    </u> | <u>-</u> |
|----------------------------------------------------------|--------------------------|----------------------------------|------|-------------------------------|----------|----------------------------------------------|----------|
| Effective embedment                                      |                          | h <sub>ef</sub>                  | [mm] | 40                            | 60       | 60                                           | 80       |
| Factor for determinat                                    | ion of the resistance    | k <sub>1</sub> =k <sub>cr</sub>  | [-]  | Va                            | lues are | given in Tl                                  | R055     |
| to concrete cone failu                                   | ıre                      | k <sub>1</sub> =k <sub>ucr</sub> | [-]  | depending of the design guide |          |                                              |          |
| Partial safety factor for craked or non-cracked concrete |                          | $\gamma_2 = \gamma_{inst}$       | [-]  | 1,2 1,4                       |          |                                              | ,4       |
|                                                          | concrete C30/37          |                                  | [-]  | 1,22                          |          |                                              |          |
| Increasing factor for N <sub>RK</sub>                    | concrete C40/50          | $\Psi_{c}$                       | [-]  | 1,41                          |          |                                              |          |
| TOT TAKE                                                 | concrete C50/60          |                                  | [-]  | 1,55                          |          |                                              |          |
| Char spacing                                             | concrete cone failure    | S <sub>cr,N</sub>                | [mm] | 120                           | 180      | 180                                          | 240      |
| Char. spacing                                            | splitting failure        | S <sub>cr,sp</sub>               | [mm] | 200                           | 300      | 360                                          | 400      |
| Char. edge distance                                      | concrete cone failure    | C <sub>cr,N</sub>                | [mm] | 60                            | 90       | 90                                           | 120      |
|                                                          | splitting failure        | C <sub>cr,sp</sub>               | [mm] | 100                           | 150      | 180                                          | 200      |

<sup>1)</sup> In absence of other national regulations

| CT Bolt 1                                                                                | Annau 04 |
|------------------------------------------------------------------------------------------|----------|
| Design according to Technical Report TR055 Characteristic resistance under tension loads | Annex C1 |

Table 5: Characteristic values for shear loads in case of static and quasi static loading for design method A

|                                 |                               |      | M8   | M10  | M12  | M16  |  |  |
|---------------------------------|-------------------------------|------|------|------|------|------|--|--|
| Steel failure without lever arm |                               |      |      |      |      |      |  |  |
| Char. resistance                | $V_{Rk,s}$                    | [kN] | 8,1  | 17,6 | 24,7 | 45,9 |  |  |
| Partial safety factor           | γ <sub>Ms</sub> <sup>1)</sup> | [-]  | 1,25 |      |      |      |  |  |

| Steel failure with lever arm |                                |      |      |      |      | -     |
|------------------------------|--------------------------------|------|------|------|------|-------|
| Char. bending resistance     | M <sup>0</sup> <sub>Rk,s</sub> | [Nm] | 22,8 | 45,5 | 76,6 | 194,8 |
| Partial safety factor        | γ <sub>Ms</sub> <sup>1)</sup>  | [-]  | 1,25 |      |      |       |

| Concrete pry-out failure                                  |                                 |     |     |     |     |     |  |  |  |
|-----------------------------------------------------------|---------------------------------|-----|-----|-----|-----|-----|--|--|--|
| Factor for determination of resistance to pry-out failure | k <sub>3</sub> =k <sub>8</sub>  | [-] | 1,0 | 2,0 | 2,0 | 2,0 |  |  |  |
| Partial safety factor                                     | $\gamma_2 = \gamma_{inst}^{1)}$ | [-] | 1,0 |     |     |     |  |  |  |

| Concrete edge failure                          |                                        |      |     |    |    |    |  |  |  |  |
|------------------------------------------------|----------------------------------------|------|-----|----|----|----|--|--|--|--|
| Effective length of anchor under shear loading | I <sub>f</sub>                         | [mm] | 40  | 60 | 60 | 80 |  |  |  |  |
| Outside diameter of anchor                     | d <sub>nom</sub>                       | [mm] | 8   | 10 | 12 | 16 |  |  |  |  |
| Partial safety factor                          | $\gamma_2 = \gamma_{\text{inst}^{1)}}$ | [-]  | 1,0 |    |    |    |  |  |  |  |

<sup>1)</sup> In absence of other national regulations

| CT Bolt 1                                                                              |          |
|----------------------------------------------------------------------------------------|----------|
| Design according to Technical Report TR055 Characteristic resistance under shear loads | Annex C2 |

Table 6: Characteristic tension resistance in cracked and non-cracked concrete under fire exposure for design method A acc. TR020

|                           |                           |      | М8  | M10 | M12 | M16 |
|---------------------------|---------------------------|------|-----|-----|-----|-----|
| Steel failure             |                           |      |     |     |     |     |
|                           | R30 N <sub>Rk,s,fi</sub>  | [kN] | 0,4 | 0,9 | 1,7 | 3,1 |
| Characteristic resistance | R60 N <sub>Rk,s,fi</sub>  | [kN] | 0,3 | 0,8 | 1,3 | 2,4 |
| Characteristic resistance | R90 N <sub>Rk,s,fi</sub>  | [kN] | 0,3 | 0,6 | 1,1 | 2,0 |
|                           | R120 N <sub>Rk,s,fi</sub> | [kN] | 0,2 | 0,5 | 0,8 | 1,6 |

| Pullout failure (cracked and non-cracked concrete) |                           |      |     |     |     |     |  |  |
|----------------------------------------------------|---------------------------|------|-----|-----|-----|-----|--|--|
|                                                    | R30 N <sub>Rk,p,fi</sub>  | [kN] | 0,8 | 2,3 | 3,0 | 4,0 |  |  |
| Char. resistance in concrete ≥ C20/25              | R60 N <sub>Rk,p,fi</sub>  | [kN] | 0,8 | 2,3 | 3,0 | 4,0 |  |  |
| Char. resistance in concrete 2 C20/25              | R90 N <sub>Rk,p,fi</sub>  | [kN] | 0,8 | 2,3 | 3,0 | 4,0 |  |  |
|                                                    | R120 N <sub>Rk,p,fi</sub> | [kN] | 0,6 | 1,8 | 2,4 | 3,2 |  |  |

| Concrete cone and splitting failure <sup>2)</sup> (cracked and non-cracked concrete) |                                        |      |     |     |     |      |  |  |
|--------------------------------------------------------------------------------------|----------------------------------------|------|-----|-----|-----|------|--|--|
|                                                                                      | R30 N <sup>0</sup> Rk,c,fi             | [kN] | 1,8 | 5,0 | 5,0 | 10,3 |  |  |
| Char. resistance in concrete ≥ C20/25                                                | R60 N <sup>0</sup> <sub>Rk,c,fi</sub>  | [kN] | 1,8 | 5,0 | 5,0 | 10,3 |  |  |
| Char. resistance in concrete 2 020/23                                                | R90 N <sup>0</sup> <sub>Rk,c,fi</sub>  | [kN] | 1,8 | 5,0 | 5,0 | 10,3 |  |  |
|                                                                                      | R120 N <sup>0</sup> <sub>Rk,c,fi</sub> | [kN] | 1,5 | 4,0 | 4,0 | 8,2  |  |  |
| Characteristic spacing                                                               | S <sub>cr,N,fi</sub>                   | [mm] | 160 | 240 | 240 | 320  |  |  |
| Characteristic edge distance                                                         | C <sub>cr,N,fi</sub>                   | [mm] | 80  | 120 | 120 | 160  |  |  |

Design under fire exposure is performed according to the design method given in TR 020. Under fire exposure usually cracked concrete is assumed. The design equations are given in TR 020, Section 2.2.1.

TR 020 covers design for fire exposure from one side. For fire attack from more than one side the edge distance must be increased to  $c_{min} \ge 300$  mm and  $\ge 2 \cdot h_{ef}$ .

In absence of national regulation, the partial safety factor  $\gamma_{Ms} = 1,0$  is recommended in fire situation

| CT Bolt 1                                                                                        |          |
|--------------------------------------------------------------------------------------------------|----------|
| Design according to Technical Report TR020 Characteristic tension resistance under fire exposure | Annex C3 |

<sup>2)</sup> As a rule, splitting failure can be neglected when cracked concrete and reinforcement is assumed.

Table 7: Characteristic shear resistance in cracked and non-cracked concrete under fire exposure for design method A acc. TR020

|                                 |                           |      | M8  | M10 | M12          | M16 |
|---------------------------------|---------------------------|------|-----|-----|--------------|-----|
| Steel failure without lever arm |                           |      | -   |     | <del>-</del> |     |
|                                 | R30 V <sub>Rk,s,fi</sub>  | [kN] | 0,4 | 0,9 | 1,7          | 3,1 |
| Characteristic resistance       | R60 V <sub>Rk,s,fi</sub>  | [kN] | 0,3 | 0,8 | 1,3          | 2,4 |
| Characteristic resistance       | $R90\;V_{Rk,s,fi}$        | [kN] | 0,3 | 0,6 | 1,1          | 2,0 |
|                                 | R120 V <sub>Rk,s,fi</sub> | [kN] | 0,2 | 0,5 | 0,8          | 1,6 |

| Steel failure with lever arm  |                                        |      |     |     |     |     |  |  |
|-------------------------------|----------------------------------------|------|-----|-----|-----|-----|--|--|
|                               | R30 M <sup>0</sup> <sub>Rk,s,fi</sub>  | [Nm] | 0,4 | 1,1 | 2,6 | 6,7 |  |  |
|                               | R60 M <sup>0</sup> <sub>Rk,s,fi</sub>  | [Nm] | 0,3 | 1,0 | 2,0 | 5,0 |  |  |
| Characteristic bending moment | R90 M <sup>0</sup> <sub>Rk,s,fi</sub>  | [Nm] | 0,3 | 0,7 | 1,7 | 4,3 |  |  |
|                               | R120 M <sup>0</sup> <sub>Rk,s,fi</sub> | [Nm] | 0,2 | 0,6 | 1,3 | 3,3 |  |  |

| Concrete pry-out failure                                  |                                |      |     |      |      |      |  |  |  |
|-----------------------------------------------------------|--------------------------------|------|-----|------|------|------|--|--|--|
| Factor for determination of resistance to pry-out failure | k <sub>3</sub> =k <sub>8</sub> | [-]  | 1,0 | 2,0  | 2,0  | 2,0  |  |  |  |
|                                                           | R30 V <sub>Rk,cp,fi</sub>      | [kN] | 1,8 | 10,0 | 10,0 | 20,6 |  |  |  |
| Characteristic registeres                                 | R60 V <sub>Rk, cp,fi</sub>     | [kN] | 1,8 | 10,0 | 10,0 | 20,6 |  |  |  |
| Characteristic resistance                                 | R90 V <sub>Rk, cp,fi</sub>     | [kN] | 1,8 | 10,0 | 10,0 | 20,6 |  |  |  |
|                                                           | R120 V <sub>Rk, cp,fi</sub>    | [kN] | 1,5 | 8,0  | 8,0  | 16,5 |  |  |  |

| Concrete edge failure                     |                  |      |    |    |    |    |  |  |
|-------------------------------------------|------------------|------|----|----|----|----|--|--|
| Eff. length of anchor under shear loading | I <sub>f</sub>   | [mm] | 40 | 60 | 60 | 80 |  |  |
| Outside diameter of anchor                | d <sub>nom</sub> | [mm] | 8  | 10 | 12 | 16 |  |  |

Design under fire exposure is performed according to the design method given in TR 020. Under fire exposure usually cracked concrete is assumed. The design equations are given in TR 020, Section 2.2.2.

TR 020 covers design for fire exposure from one side. For fire attack from more than one side the edge distance must be increased to  $c_{min} \ge 300$  mm and  $\ge 2 \cdot h_{ef}$ .

| CT Bolt 1                                                                                        | Amney C4 |
|--------------------------------------------------------------------------------------------------|----------|
| Design according to Technical Report TR020 Characteristic tension resistance under fire exposure | Annex C4 |

Table 8: Displacements under tension loading

|                                                  |                      |         | М8   | M10   | M12   | M16   |
|--------------------------------------------------|----------------------|---------|------|-------|-------|-------|
| Tension load in non-cracked co                   | ncrete C20/2         | 25 [kN] | 2,38 | 4,76  | 5,44  | 11,90 |
| Dianlacament                                     | $\delta_{\text{N0}}$ | [mm]    | 0,05 | 0,10  | 0,06  | 0,30  |
| Displacement                                     | δ <sub>N</sub> ∞     | [mm]    | 0,65 | 1,17  | 1,53  | 0,65  |
| Tension load in non-cracked concrete C50/60 [kN] |                      |         | 3,69 | 9,92  | 10,20 | 18,45 |
| Dianlacement                                     | δηο                  | [mm]    | 0,05 | 0,24  | 0,10  | 0,10  |
| Displacement                                     | δ <sub>N</sub> ∞     | [mm]    | 0,65 | 1,17  | 1,53  | 0,65  |
| Tension load in cracked concrete                 | e C20/25 [kN         | ]       | 1,19 | 4,76  | 4,08  | 4,08  |
| Dianlagament                                     | $\delta_{\text{N0}}$ | [mm]    | 0,05 | 0,83  | 1,04  | 0,40  |
| Displacement                                     | δ <sub>N</sub> ∞     | [mm]    | 1,15 | 1,17  | 1,53  | 1,14  |
| Tension load in cracked concrete C50/60 [kN]     |                      | 1,85    | 4,76 | 10,20 | 6,33  |       |
| Disabasasas                                      | δηο                  | [mm]    | 2,95 | 0,94  | 1,89  | 3,43  |
| Displacement                                     | δ <sub>N</sub> ∞     | [mm]    | 2,95 | 1,17  | 1,53  | 3,43  |

Tableau 9: Displacements under shear loading

|                                            |     |      | M8   | M10  | M12   | M16  |
|--------------------------------------------|-----|------|------|------|-------|------|
| Shear load in cracked and non-cracked [kN] |     | 4,63 | 9,14 | 9,52 | 26,23 |      |
| D: 1                                       | δνο | [mm] | 5,50 | 5,26 | 5,84  | 3,60 |
| Displacement                               | δ∨∞ | [mm] | 8,25 | 7,89 | 8,76  | 5,40 |

Additional displacement due to anular gap between anchor and fixture is to be taken into account.

| CT Bolt 1     |          |
|---------------|----------|
| Displacements | Annex C5 |

Table 10: Characteristic values of resistance under tension loads in case of seismic performance category C1 for design acc. to TR045

|                       |                        |      | M12                | M16  |  |
|-----------------------|------------------------|------|--------------------|------|--|
| Steel failure         |                        |      |                    |      |  |
| Char. resistance      | N <sub>Rk,s,seis</sub> | [kN] | 43,4               | 75,4 |  |
| Partial safety factor | γMs,seis               | [-]  | 1,88 <sup>1)</sup> |      |  |

| Pullout failure           |                            |      |     |    |  |  |  |
|---------------------------|----------------------------|------|-----|----|--|--|--|
| Characteristic resistance | $N_{Rk,p,seis}$            | [kN] | 12  | 12 |  |  |  |
| Partial safety factor     | $\gamma_2 = \gamma_{inst}$ | [-]  | 1,4 |    |  |  |  |

<sup>1)</sup> In absence of other national regulations

Table 11: Characteristic values of resistance under shear loads in case of seismic performance category C1 for design acc. to TR045

|                                 |                 |      | M12                | M16  |  |
|---------------------------------|-----------------|------|--------------------|------|--|
| Steel failure without lever arm |                 |      |                    |      |  |
| Characteristic resistance       | $V_{Rk,s,seis}$ | [kN] | 13,6               | 24,8 |  |
| Partial safety factor           | γMs,seis        | [-]  | 1,25 <sup>1)</sup> |      |  |

<sup>1)</sup> In absence of other national regulations

CT Bolt 1

Performances
Characteristic resistance under seismic actions
Design according to TR045

Annex C6